Original Russian Text Copyright © 2004 by Kuznetsova, Egorochkin, Mushtina, Bogoradovskii.

Intensity of the $\nu(C\equiv C)$ Bands in the IR Spectra of Acetylene Derivatives and σ_R^0 Constants of Organosilicon, Organogermanium, and Organotin Substituents

O. V. Kuznetsova, A. N. Egorochkin, T. G. Mushtina, and E. T. Bogoradovskii

Razuvaev Institute of Organometallic Compounds, Russian Academy of Sciences, Nizhni Novgorod, Russia St. Petersburg State Institute of Technology, St. Petersburg, Russia

Received September 26, 2002

Abstract—The integral absorptivities of shape-characteristic $v(C \equiv C)$ bands in the IR spectra of 66 acetylene derivatives RC \equiv CX (R = H, Me₃M; X are inorganic and organic substituents) are related by a common linear equation to the σ_R^0 constants of the R and X substituents. The σ_R^0 constants of 10 Alk₃M substituents were calculated. The σ_R^0 , σ_R , and σ_R^+ constants of Me₃M substituents were analyzed. The positive σ_R^0 values (0.12, 0.06, and 0.04 for R = Si, Ge, and Sn, respectively) suggest that in the ground electronic state of Me₃MC \equiv CX molecules the resonance acceptor effect of the Me₃M substituents (d,π conjugation) prevails over donor (σ,π conjugation). The first effect attenuates and the second enhances as the atomic number of M increases.

The modern view of conjugation in organometallic compounds Alk_3MR_π (M = Si, Ge, Sn; $R_\pi = C_6H_5$, $H_2C=CH$, $HC\equiv C$, etc.) is based on the hypothesis of dual (acceptor and simultaneously donor) resonance properties of the Alk_3M substituent with respect to the reaction center R_π (see, for example, [1]). The resonance acceptor properties of the Alk_3M substituent (d, π conjugation) result from interaction of nd orbitals of M, as well as σ^* orbitals of M-C with the π system of R_π . The resonance donor properties of Alk_3M (σ , π conjugation) result from interaction of σ orbitals of M-C with the π system of R_π . In organometallic compounds $Alk_3MCH_2R_\pi$, no other effect that the donor σ , π conjugation is operative.

At present the regularities of conjugation in organometallic compounds have thoroughly been studied on a qualitative level only. Thus, in particular, as the atomic number of M increases in the Si–Ge–Sn series, d,π conjugation attenuates, whereas σ,π conjugation enhances. The d,π -conjugation effect depends both on the type of R_{π} and the partial positive charge δ^+ induced on R_{π} by complex formation, ionization, and chemical reactions. A general tendency is observed: The higher δ^+ and the atomic number of M, the stronger enhancement of σ,π conjugation in Alk₃MR_{π} and Alk₃MCH₂R_{π} systems [1]. Therefore, Alk₃M and Alk₃MCH₂ substituents are impossible to characterize by universal resonance constants.

In physical organometallic chemistry, conjugation is quantitatively measured by the resonance param-

eters σ_R^0 (ground electronic state of Alk₃MR_{π} and Alk₃MCH₂R_{π} molecules; $\delta^+ = n$ 0.01 e), σ_R ($\delta^+ = n$ 0.01 e), and σ_R^+ ($\delta^+ = n$ 0.1 e) of Alk₃M and Alk₃MCH₂ substituents. Regardless of the fact that quantitative characteristics of conjugation are exceptionally important for the theoretical chemistry of organometallic compounds, a sufficiently full set of resonance parameters is available for R_{π} = C₆H₅ only [1, 2].

The aim of the present work was to compare the resonance parameters σ_R^0 of Me₃M (M = Si, Ge, Sn) substituents, to correlate conjugation with the charge δ^+ on R_{π} in acetylene derivatives, and to develop a procedure for estimating σ_R^0 for R_3 M (R is any group) substituents at the triple bond from the integral absorptivities of the $\nu(C\equiv C)$ bands in the IR spectra.

The integral absorptivities A of the v(C=C) bands in the IR spectra of Me₃SnC=CX compounds vary with varied X substituent (Table 1). Correlation between A and donor–acceptor properties of X can be established on the basis of the general theory of intensities [3], according to which the integral absorptivity A is proportional to the squared derivative of the dipole moment μ of the molecule by the ith normal coordinate Q_i [Eq. (1)].

$$A \sim (\partial \mu / \partial Q_i)_0^2. \tag{1}$$

When applied to the shape-characteristic A–B stretching vibration in a polyatomic molecule, Eq. (1) is simplified to Eq. (2).

X	ν(C≡C), cm ⁻¹	$A, 1 \text{ mol}^{-1} \text{ cm}^{-1}$	$A^{1/2}$, $1^{1/2} \text{mol}^{-1/2} \text{cm}^{-1}$	$\sigma_{R}^{0}(X)$
CH ₂ SnMe ₃	2140	3670	-60.6	-0.21
CH ₂ SiMe ₃	2132	2680	-51.8	-0.18
CH ₂ Ph	2156	1240	-35.2	-0.11
Ph	2139	1180	-34.4	-0.10
CH ₂ CMe ₃	2151	1110	-33.3	-0.09
CH ₂ SPh	2154	680	-26.1	-0.08
CH ₂ C ₆ F ₅	2160	680	-26.1	-0.08
CH ₂ SC ₆ F ₅	2156	300	-17.5	-0.02
C ₆ F ₅	2154	70	-8.4	-0.01
H	2012	18	-4.2	0.00

Table 1. Integral absorptivities A of the $\nu(C \equiv C)$ bands and σ_R^0 constants of the X substituents in Me₃SnC \equiv CX compounds

$$A \sim (\partial \mu_{A-B}/\partial q_{A-B})_2^0. \tag{2}$$

Here μ_{A-B} and q_{A-B} are the dipole moment and stretching coordinate of the A-B bond. The fact that the A-B vibration is shape-characteristic allows this bond to be represented as a diatomic molecule for which Eq. (3) is valid [3].

$$\partial \mu_{A-B}/\partial q_{A-B} \sim \mu_{A-B}/r_0.$$
 (3)

Here r_0 is the A–B interatomic distance. If r_0 = const, then Eq. (4) is valid.

$$A^{1/2} \sim \mu_{A-B}$$
. (4)

Thus, the A value for the highly shape-characteristic A–B stretching vibrations depends exclusively on the electronic effects of groups surrounding this bond and thus affecting μ_{A-B} .

The dipole moment μ_{A-B} of the A–B bond as a diatomic molecule is related to the difference of the effective atomic charges (Δq) on A and B by Eq. (5) [4].

$$\mu_{A-B} = \Delta q r_0. \tag{5}$$

There is an important particular case, when μ_{A-B} is affected exclusively by conjugation of the A-B bond with other groups in the molecule (see, for example, [5-7]). Therewith, the integral absorptivity A depends exclusively on π components of the dipole moment (μ_{A-B}^{π}) and on the difference in the effective atomic charges ($\Delta q \pi$) on A and B, and Eqs. (5) and (4) transform into Eqs. (6) and (7).

$$\mu_{A-B}^{\pi} = \Delta q r_0, \tag{6}$$

$$A^{1/2} \sim \Delta q_{\pi}. \tag{7}$$

Thus, Eqs. (3)–(7) hold rigorously for the highly shape-characteristic v(A-B) stretching vibrations of

A–B bonds. Unlike v(A-B), the $v(C\equiv C)$ stretching vibrations of the C \equiv C bond in acetylene derivatives are in general not ideally characteristic. Nevertheless, we suggested that they can be treated similarly to v(A-B). This suggestion is supported by the following three conclusions drawn from a combined analysis of published theoretical calculations of shape characteristicity of $v(C\equiv C)$ vibrations [3, 5, 8–10] and our correlations.

1. Both in monosubstituted HC≡CX (Table 2, compounds I-XVIII) and in disubstituted RC=CX (compounds XIX-LXVI; R = Me₃C, Me₃Si, Me₃Ge, Me₃Sn) acetylenes, the $\nu(C \equiv C)$ stretching vibration is largely due to changing $C \equiv C$ bond length [3, 5, 8–10]. At the same time, according to the calculations [3, 5–10], the shape characteristicity of v(C=C) in RC=CX depends on the type of substituent R and increases in going from H≡CX and Me₃CC≡CX to organometallic derivatives Me₃MC≡CX (M = Si, Ge, Sn). Therefore, one might expect in HC≡CX and $Me_3CC \equiv CX$ a stronger (compared with $Me_3MC \equiv CX$) deviation of the shape of the $v(C \equiv C)$ stretching vibration from the ideal characteristicity inherent in $\nu(A-B)$. Nevertheless, as shown in [5–8], $\nu(C=C)$ is sufficiently shape-characteristic, even though v(C=C)and v(CC≡) vibrations in HC≡CX and Me₃CC≡CX are mixed with each other to a certain extent. Illustrative evidence for this statement comes from correlation analysis. As follows from ab initio quantumchemical calculations for HC≡CX molecules [11], the π components of the effective atomic charges in the C=C ($\Delta q\pi$) fragment are proportional to the σ_R^0 constants of the X substituents [Eq. (8)].

$$\Delta q_{\pi} \sim \sigma_{R}^{0}. \tag{8}$$

On the assumption that $\nu(C=C)$ is completely shape-characteristic, then, in view of Eq. (8), we can

Table 2. Experimental $A^{1/2}$ values in RC=CX compounds (R = H, a Me₃C, b Me₃Si, Me₃Ge, d Me₃Sne) and σ_R^0 constants of substituents R and X

Comp.	R	X	$A^{1/2}$, $1^{1/2} \text{ mol}^{-1/2} \text{ cm}^{-1}$	$\sigma_R^0(\mathbf{R})$	$\sigma_R^0(X)$	$\sigma_R^0(X) - \sigma_R^0(R)$	$\begin{bmatrix} [\sigma_R^0(X) - \\ \sigma_R^0(R)]_{calc} \end{bmatrix}^f$	Δ^{g}
 I	Н	OEt	_87.2	-0.05	-0.44	-0.39	-0.39	0
II	Н	t-Bu	-16.7	-0.05	-0.13	-0.08	-0.08	0
III	Н	Bu	-14.4	-0.05	-0.11	-0.06	-0.06	0
IV	Н	CH ₂ OH	-12.4	-0.05	-0.06	-0.01	-0.06	-0.05
V	Н	Ph	-11.7	-0.05	-0.10	-0.05	-0.05	0
VI	Н	CH(OH)Ph	-10.8	-0.05	-0.08	-0.03	-0.05	-0.02
VII	Н	CH ₂ NMe ₂	-9.8	-0.05	-0.10	-0.05	-0.04	0.01
VIII	Н	CH(OH)Me	_9.7	-0.05	-0.08	-0.03	-0.04	-0.01
IX	Н	CH ₂ Cl	10.9	-0.05	-0.04	0.01	0.05	0.04
X	Н	CH ₂ Br	11.0	-0.05	-0.02	0.03	0.05	0.02
XI	Н	$CH_2N^+H_3Cl^-$, H_2O	16.2	-0.05	0.00	0.05	0.07	0.02
XII	Н	$CH_2N^+Me_3Br^-$	23.1	-0.05	0.03	0.08	0.10	0.02
XIII	Н	CO ₂ Et	49.8	-0.05	0.18	0.23	0.22	-0.01
XIV	Н	COPh	50.1	-0.05	0.19	0.24	0.22	-0.02
XV	Н	CO ₂ Me	51.2	-0.05	0.16	0.21	0.23	0.02
XVI	Н	COMe	54.1	-0.05	0.22	0.27	0.24	-0.03
XVII	Н	COCl	59.6	-0.05	0.21	0.26	0.27	0.01
XVIII	Н	CO ₂ H	64.9	-0.05	0.29	0.34	0.29	-0.05
XIX	Me_3C	NMe_2	-71.0	-0.18	-0.53	-0.35	-0.32	0.03
XX	Me ₃ C	NMePh	-70.3	-0.18	-0.50	-0.32	-0.32	0
XXI	Me ₃ C	SEt	-9.8	-0.18	-0.25	-0.07	-0.04	0.03
XXII	Me ₃ C	Br	-7.9	-0.18	-0.23	-0.05	-0.04	0.01
XXIII	Me ₃ C	I	-7.5	-0.18	-0.22	-0.04	-0.03	0.01
XXIV	Me ₃ C	Cl	-7.7	-0.18	-0.22	-0.04	-0.04	0
XXV	$Me_3^{\circ}C$	Me	5.2	-0.18	-0.10	0.08	0.02	-0.06
XXVI	$Me_3^{\circ}C$	Ph	16.3	-0.18	-0.10	0.08	0.07	-0.01
XXVII	$Me_3^{\circ}C$	CH ₂ OH	23.0	-0.18	-0.06	0.12	0.10	-0.02
XXVIII	Me_3C	CH_2NMe_2	14.8	-0.18	-0.10	0.08	0.07	-0.01
XXIX	Me_3C	CO_2Me	79.3	-0.18	0.16	0.34	0.36	0.02
XXX	Me_3C	COCl	93.2	-0.18	0.21	0.39	0.42	0.03
XXXI	Me_3C	CO ₂ H	94.8	-0.18	0.29	0.47	0.43	-0.04
XXXII	Me ₃ Si	CH ₂ SiMe ₃	-65.5	0.12	-0.18	-0.30	-0.30	0
XXXIII	Me ₃ Si	$CH_2Sn(t-Bu)_3$	-64.4	0.12	-0.22	-0.34	-0.29	0.05
XXXIV	Me ₃ Si	CH ₂ GeMe ₃	-63.7	0.12	-0.18	-0.30	-0.29	0.01
XXXV	Me ₃ Si	Ph	-52.0	0.12	-0.10	-0.22	-0.23	-0.01
XXXVI	Me ₃ Si	CH ₂ Ph	-51.3	0.12	-0.11	-0.23	-0.23	0
XXXVII	Me ₃ Si	SC_6F_5	-51.0	0.12	-0.12	-0.24	-0.23	0.01
XXXVIII	Me ₃ Si	$CH_2C_6F_5$	-41.2	0.12	-0.08	-0.20	-0.19	0.01
XXXIX	Me ₃ Si	t-Bu	-39.9	0.12	-0.13	-0.25	-0.18	0.07
XL	Me ₃ Si	CH ₂ SPh	-35.9	0.12	-0.08	-0.20	-0.16	0.04
XLI	Me ₃ Si	CH ₂ SC ₆ F ₅	-33.2	0.12	-0.02	-0.14	-0.15	-0.01
XLII	Me ₃ Si	CH ₂ OMe	-28.6	0.12	-0.07	-0.19	-0.13	0.06
XLIII	Me ₃ Si	C_6F_5	-25.4 22.1	0.12	-0.01	-0.13	-0.11	0.02
XLIV	Me ₃ Si	CHO CH CaMa	22.1	0.12	0.24	0.12	0.10	-0.02
XLV	Me ₃ Ge	CH SiMa	-67.2	0.06	-0.18	-0.24	-0.30	-0.06
XLVI	Me ₃ Ge	CH Ph	-65.6	0.06	-0.18	-0.24	-0.29	-0.05
XLVII XLVIII	Me ₃ Ge	CH ₂ Ph	-40.2 -38.7	0.06 0.06	-0.11 -0.12	-0.17 -0.18	-0.18 -0.17	-0.01 0.01
AL VIII	Me ₃ Ge	SC_6F_5	-30.1	U.UU L	_0.1 <i>Z</i>	-0.10	-0.17	0.01

Table 2. (Contd.)

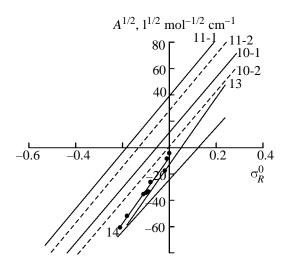
Comp.	R	X	$A^{1/2}$, $1^{1/2} \text{mol}^{-1/2} \text{cm}^{-1}$	$\sigma_R^0(\mathbf{R})$	$\sigma_R^0(\mathbf{X})$	$\sigma_R^0(X) - \sigma_R^0(R)$	$ \begin{bmatrix} \sigma_R^0(X) - \\ \sigma_R^0(R) \end{bmatrix}_{\text{calc}}^{\text{f}} $	$\Delta^{ m g}$
XLIX	Me ₃ Ge	Ph	-37.7	0.06	-0.10	-0.16	-0.17	-0.01
L	Me ₃ Ge	$CH_2C_6F_5$	-29.1	0.06	-0.08	-0.14	-0.13	0.01
LI	Me ₃ Ge	CH_2SPh	-28.8	0.06	-0.08	-0.14	-0.13	0.01
LII	Me ₃ Ge	CH ₂ OMe	-24.5	0.06	-0.07	-0.13	-0.11	0.02
LIII	Me ₃ Ge	H	-20.5	0.06	0.00	-0.06	-0.09	-0.03
LIV	Me ₃ Ge	$CH_2SC_6F_5$	-19.2	0.06	-0.02	-0.08	-0.09	-0.01
LV	Me ₃ Ge	CH_2Br	-11.4	0.06	-0.02	-0.08	-0.05	0.03
LVI	Me ₃ Ge	CHO	44.2	0.06	0.24	0.18	0.20	0.02
LVII	Me ₃ Sn	CH ₂ SnMe ₃	-60.6	0.04	-0.21	-0.25	-0.27	-0.02
LVIII	Me ₃ Sn	CH_2SiMe_3	-51.8	0.04	-0.18	-0.22	-0.23	-0.01
LIX	Me ₃ Sn	CH ₂ Ph	-35.2	0.04	-0.11	-0.15	-0.16	-0.01
LX	Me ₃ Sn	Ph	-34.4	0.04	-0.10	-0.15	-0.15	0
LXI	Me ₃ Sn	CH ₂ Bu-t	-33.3	0.04	-0.09	-0.13	-0.15	-0.02
LXII	Me ₃ Sn	$\overline{\text{CH}_{2}\text{SPh}}$	-26.1	0.04	-0.08	-0.12	-0.12	0
LXIII	Me ₃ Sn	$CH_2C_6F_5$	-26.1	0.04	-0.08	-0.12	-0.12	0
LXIV	Me ₃ Sn	$CH_2SC_6F_5$	-17.5	0.04	-0.02	-0.06	-0.08	-0.02
LXV	Me ₃ Sn	\overline{C}_6F_5	-8.4	0.04	-0.01	-0.05	-0.04	0.01
LXVI	Me ₃ Sn	H	-4.2	0.04	0.00	-0.04	-0.02	0.02

^a [8], ^b [5], ^c [6], ^d [7]. ^e Present work. ^f The $[\sigma_R^0(X) - \sigma_R^0(R)]_{calc}$ values were obtained by Eq. (17). ^g $\Delta = [\sigma_R^0(X) - \sigma_R^0(R)]_{calc} - [\sigma_R^0(X) - \sigma_R^0(R)]$.

Table 3. Linear equations $A^{1/2} = a\sigma_R^0(X) + b$, standard deviations S_a and S_b , standard approximation errors S_Y , correlation coefficients r, point numbers n, and calculated $\sigma_R^0(R)$ constants for RC=CX series

Series	Equation no.	Equation	R	$\sigma_R^0(\mathbf{R})$	S_a	S_b	S_Y	r	n
HC≡CX [8]	10-1	$A^{1/2} = 217\sigma_R^0(X) + 10.8$	Н	-0.05	_	_	=	0.992	18
$Me_3CC \equiv CX$ [5]	11-1	$A^{1/2} = 213\sigma_R^0(X) + 38.3$	Me_3C	-0.18	_	_	_	0.995	17
Me ₃ SiC≡CX [6]	12	$A^{1/2} = 197\sigma_R^0(X) - 24.7$	Me ₃ Si	0.12 ± 0.02	15	2.1	6.0	0.969	13
Me ₃ GeC≡CX [7]	13	$A^{1/2} = 253\sigma_R^0(X) - 13.0$	Me ₃ Ge	0.06 ± 0.03	16	2.0	5.8	0.981	12
Me ₃ SnC≡CX	14 L	$A^{1/2} = 253\sigma_R^0(X) - 7.5$	Me ₃ Sn	0.04 ± 0.02	13	1.4	2.7	0.990	10

write Eq. (7) for the HC≡CX series in the form of Eq. (9).


$$A^{1/2} \sim \sigma_R^0(X).$$
 (9)

Correlation analysis of experimental $A^{1/2}$ values for HC=CX and Me₃MC=CX (M = C, Si, Ge, Sn) gave linear equations (10-1), (11-1), and (12)–(14) of the type $A^{1/2} = a\sigma_R^0(X) + b$ (Table 3, Fig. 1), whose slopes a compare with each other, whereas free terms b much differ in value and sign.

Had $v(C \equiv C)$ been not sufficiently highly shape-characteristic, no linear correlations (10)–(14) would have been found. At the same time, as will be shown

below, the free terms b in Eqs. (10-1) and (11-1) bear information about deviation of the $\nu(C=C)$ stretching vibration in HC=CX and Me₃CC=CX from the ideal characteristicity inherent in $\nu(A-B)$.

2. For the HC=CX and Me₃CC=CX series, b values are positive. If v(C=C) in HC=CX were completely characteristic, Eq. (10) would contain no free term, since at X = H, the $A^{1/2}$, $\sigma R(H)$, as well as Δq_{π} [11] are equal to zero. The fact that v(C=C) in HC=CX are not completely characteristic (see also [6–8]) can formally be taken into account, assuming that the σ_R constant of the hydrogen atom as substituent is -0.05 rather than 0. Then Eq. (10-1) trans-

Fig. 1. Plot of $A^{1/2}$ vs. resonance constants σ_R^0 of the X substituents in RC=CX series. Plot numbers correspond to equation numbers in the text. Points belonging to plot 14 are shown (Me₃SnC=CX series).

forms into Eq. (10-2) that corresponds a hypothetical case when the stretching vibration of the C=C bond in HC=CX is completely characteristic.

$$A^{1/2} = 217\sigma_R^0(X). (10-2)$$

Introduction of the same correction (-0.05) for the incomplete characteristicity of $v(C \equiv C)$ in Me_3CC-CX transforms Eq. (11-1) into Eq. (11-2).

$$A^{1/2} = 213\sigma_R^0(X) + 27.6 = 213[\sigma_R^0(X) + 0.13].$$
 (11-2)

Here 0.13 is the negative difference for the σ_R^0 constant of the Me₃C group. The slopes of Eqs. (10-2) and (11-2) are quite close to each other. The almost parallel shift of plot 11-2 to lower $\sigma_R^0(X)$ values by -0.13 (Fig. 1) can be explained in terms of conjugation of the Me₃C group with the triple bond.

Thus, if the $\nu(C=C)$ vibration in disubstituted acetylenes RC=CX would be completely characteristic, correlations of type (15) would contain a free term [Eq. (15)]. This arises because of the conjugation of substituents R with the triple bond.

$$A^{1/2} = a\sigma_R^0(X) + b. (15)$$

3. As noted above, data in [3, 5–10], including results of normal coordinate analysis [9, 10], show that the shape characteristicity of v(C = C) increases in going from HC=CX and Me₃CC-CX to Me₃MC=CX (M = Si, Ge, Sn) and with increasing atomic number of M in Me₃MC=CX. It will be remembered that to account for the slight deviation from complete cha-

racterisicity of the $\nu(C=C)$ vibration in the HC=CX and Me₃CC≡CX series, only slight corrections in the σ_R^0 constants of the invariable substituents H and Me₃C will suffice (see item 2). This reasoning gives us grounds to suggests that deviations of $\nu(C=C)$ from ideal characteristicity, if ever occur in the $Me_3MC \equiv CX$ (M = Si, Ge, Sn) series, most probably at M = Si, are negligible. It view of the aforesaid, let us dwell on equations of type (15) for the $Me_3MC \equiv CX$ (M = Si, Ge, Sn) series (Table 3). Equations (12)–(14) for these series have negative free terms b, which sharply distinguishes them from Eqs. (10-1) and (11-1) with positive b values for HC = CX and $Me_3CC = CX$. The negative b values are unambiguous evidence showing that Me₃M substituents (M = Si, Ge, Sn) exhibit resonance acceptor properties with respect to the triple bond. An illustration of this conclusion can be found in Fig. 1, where plots 12–14 are shifted to higher $\sigma_R^0(X)$ values with respect to plot 10-2.

From these shifts we could estimate σ_R^0 for Me₃M substituents. Above we dealt with the simplest case when plots 10-2 and 11-2 are almost parallel to each other, and the σ_R^0 constant of the Me₃C substituent is given directly by the free term b of Eq. (11-2). In a more general case, plots 10-2 and 12–14 are not strictly parallel to each other. Therefore, one can only calculate a mean distance between the plots. The $A^{1/2}$ values in the Me₃SnC=CX series (Table 1) vary from -60.6 (X = CH₂SnMe₃) to -4.2 $1^{1/2}$ mol^{-1/2} cm⁻¹ (X = H). In this range, the distance between plots 10-2 and 14 varies from 0.07 to 0.02. The mean distance (0.04–0.02) is the σ_R^0 constant of the Me₃Sn substituent at the C=C bond.

Similarly, using Eqs. (12) and (13), we obtained σ_R^0 values for Me₃Si and Me₃Ge [7] (Table 3). The $\sigma_R^0(Me_3M)$ values were calculated under the assumption that the $\nu(C \equiv C)$ vibration in Me₃MC $\equiv CX$ (M = Si, Ge, Sn) is sufficiently shape-characteristic. It should be emphasized once more that this assumption for M = Ge, Sn is fairly consistent with the results of normalcoordinate analysis of Me₃MC=CH (M = C, Si, Ge, Sn), which shows that $\nu(C \equiv C)$ gets more characteristic with increasing atomic number of M [10]. At M = C and, to a lesser extent, M = Si, the $\nu(C \equiv C)$ vibration is partly mixed with $\nu(MC \equiv)$ [10]. These results cast some doubts in the reliability of the estimate +0.12 for the σ_R^0 constant of Me₃Si (Table 3). As considered above, the incomplete characteristicity of $v(C \equiv C)$ in Me₃MC \equiv CX reduces $\sigma_R^0(\text{Me}_3\text{C})$ by 0.05. Consequently, even if $\sigma_R^0 = 0.12$ for Me₃Si is an underestimated value (methods for determination of true values have been still absent), this underestimation is no larger than 0.05.

Compound	R ₃ M	X	$\sigma_{R}^{0}(R_{3}M)$	$\sigma_R^0(X)$	$\sigma_R^0(X) - \sigma_R^0(R_3M)$	$\begin{array}{c c} A^{1/2}, \\ 1^{1/2} \text{mol}^{-1/2} \text{cm}^{-1} \end{array}$
Me3SiC≡CMe	Me ₃ Si	Me	0.15	-0.10	-0.25	-56.5
Me ₃ SiC≡CCH ₂ Br	Me ₃ Si	CH ₂ Br	0.10	-0.02	-0.12	-26.1
Me ₃ SiC≡CCH ₂ OSiMe ₃	Me ₃ Si	CH ₂ OSiMe ₃	0.11	-0.02	-0.13	-29.5
Et ₃ SiC≡CH	Et3Si	H	0.11	0.00	-0.11	-23.5
<i>i</i> -Pr ₃ SiC≡CH	i-Pr ₃ Si	Н	0.15	0.00	-0.15	-33.7
<i>i</i> -Pr ₃ SiC≡CMe	i-Pr ₃ Si	Me	0.15	-0.10	-0.25	-54.9
Ph ₃ SiC≡CH	Ph ₃ Si	Н	0.19	0.00	-0.19	-41.7
Et ₃ GeC≡CPh	Et ₃ Ge	Ph	0.07	-0.10	-0.17	-37.7
Et ₃ SnC≡CCH ₂ SiMe ₃	Et ₃ Sn	CH ₂ SiMe ₃	0.05	-0.18	-0.23	-50.4
Bu ₃ SnC≡CH	Bu ₃ Sn	Н	0.04	0.00	-0.04	-9.2
$Me(t-Bu)_2SnC\equiv CH$	$Me(t-Bu)_2Sn$	Н	0.02	0.00	-0.02	-4.4
$Me(t-Bu)_2SnC \equiv CBu-t$	$Me(t-Bu)_2Sn$	t-Bu	0.04	-0.13	-0.17	-36.9
$Me(t-Bu)_2SnC \equiv CCH_2SiMe_3$	$Me(t-Bu)_2Sn$	CH ₂ SiMe ₃	0.05	-0.18	-0.23	-51.7
t-Bu ₃ SnC≡CBu-t	t-Bu3Sn	<i>t</i> -Bu	0.04	-0.13	-0.17	-38.5

Table 4. Experimental $A^{1/2}$ values and calculated σ_R^0 constants of the R₃M^a substituents in R₃MC=CX compounds

In view of the aforesaid, the five equations of type (15) for RC=CX series (R = H, Me₃C, Me₃Si, Me₃Ge, Me₃Sn) can be combined in one, provided the three following conditions are fulfilled. First, the fact that $A^{1/2}$ depends on the σ_R^0 constants of both X and R should be taken into account. Second, to account for the incomplete characteristicity of the ν (C=C) vibration, the σ_R^0 values for R = H in the HC=CX series and for R = Me₃M in the Me₃MC=CX series should be taken to be -0.05 and -0.18 (if X are organic substituents; see, for example, Table 2, compounds I-XVIII and XIX-XXXI). Third, with compounds like Me₃MC=CH and Me₃MC=CCMe₃ (M = Si, Ge, Sn), conventional σ_R^0 constants for H (0.00) and Me₃C (-0.13) should be applied.

In terms of the above approach, Eq. (16) is valid for compounds **I–LXVI** (Table 2). The corresponding plot is a straight line that passes through the origin.

$$A^{1/2} = 216[\sigma_R^0(X) - \sigma_R^0(R)],$$

$$S_a 4, S_V 5.7, r 0.990, n 66.$$
(16)

Using Eq. (16) written in form (17) and experimental $A^{1/2}$ values, we obtained $\sigma_R^0(R_3M)$ values for a series of trialkylsilyl, trialkylgermyl, and trialkylstannyl substituents (Table 4).

$$\sigma_R^0(X) - \sigma_R^0(R) = 0.0045A^{1/2},$$
 (17)
 S_a 0.0001, S_Y 0.03, r 0.990, n 66.

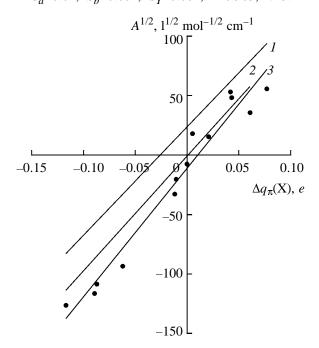
According to Eq. (7), the $A^{1/2}$ values for RC=CX series (R = H, Me₃C, Me₃Si, Me₃Ge, Me₃Sn) should

be linearly related to the π components of the difference of the effective atomic charges in the C=C fragment (Δq_{π}). Table 5 lists the input $A^{1/2}$ and Δq_{π} values for the three series and Table 6, the resulting correlation equations of type (18).

$$A^{1/2} = c\Delta q_{\pi} + d. {18}$$

Let us consider briefly these equations. The Δq_{π} values were obtained by quantum-chemical calculations of HC≡CX molecules [11] (13 substituents X, Table 5). Using the $\sigma_R^0(X)$ constants, by Eqs. (10-2), (11-2), and (14), we obtained $A^{1/2}$ values for the HC = CX and $Me_3MC = CH$ (M = C, Sn) series, and the values for M = Si, Ge were taken from [7]. As noted above, Eqs. (10-2) and (11-2) involve corrections for incomplete characteristicity of the $v(C \equiv C)$ vibration. Therefore, in Eq. (18) for R = H, d = 0. The corresponding equations for $R = Me_3M$ (M = C, Si, Ge, Sn) have a nonzero free term d (Table 6). This fact can be explained by that Δq_{π} for Me₃MC=CH comprises two components: $\Delta q_{\pi}(X)$ and $\Delta q_{\pi}(Me_3M)$. The first relates to the effect on Δq_{π} of substituents X, and the second, of substituents Me₃M. The $\Delta q_{\pi}(\text{Me}_3\text{M})$ values were calculated from equations of type (18) (Table 6), much as the $\sigma_R^0(Me_3M)$ values were determined from equations of type (15). Graphically (Fig. 2), the $\Delta q_{\pi}(\text{Me}_3\text{C})$ and $\Delta q_{\pi}(\text{Me}_3\text{Sn})$ values are the mean distances along the $\Delta q_{\pi}(X)$ axis between plot 1 (HC=CX) and plot 2 (Me₃CC=CX) or plot 3 $(Me_3SnC\equiv CX)$.

The $\Delta q_{\pi}(R)$ and $\sigma_{R}^{0}(R)$ values as quantitative characteristics of the conjugation of the R substituents


^a The $\sigma_R^0(X) - \sigma_R^0(R_3M)$ values were calculated by Eq. (17) from the $A^{1/2}$ values.

v	0.00	$A^{1/2}$, $1^{1/2} \mathrm{mol}^{-1/2} \mathrm{cm}^{-1}$				
X	$\sigma_R^0(X)$	HC≡CX	Me ₃ CC≡CX	Me ₃ SnC≡CX	$\Delta q_{\pi}(X), e$	
NH ₂	-0.47	-102.0	_72.5	-126.4	-0.117	
OMe	-0.43	-93.3	-64.0	-116.3	-0.089	
OH	-0.40	-86.8	-57.6	-108.7	-0.087	
F	-0.34	-73.8	-44.8	-93.5	-0.062	
Me	-0.10	-21.7	-6.3	-32.8	-0.012	
CH=CH ₂	-0.05	-10.8	17.0	-20.5	-0.010	
H	0.00	0	27.6	-7.5	0.000	
CN	0.09	19.5	46.8	15.3	0.021	
CF ₃	0.10	21.7	48.9	17.8	0.005	
NO_2	0.17	36.9	63.8	35.5	0.061	
COMe	0.22	47.7	74.5	48.2	0.043	
СНО	0.24	52.1	78.7	53.2	0.042	
NO	0.25	54.2	80.8	55.8	0.077	

Table 5. Calculated $A^{1/2}$ values for HC=CX,^a Me₃CC=CX,^b and Me₃SnC=CX^c compounds and $\Delta q_{\pi}(X)$ values for HC=CX^d compounds

(H, Me₃C, Me₃Si, Me₃Ge, Me₃Sn) with the triple bond in RC≡CX molecules are related to each other by Eq. (19).

$$\Delta q_{\pi}(R) = 0.23\sigma_{R}^{0}(R) + 0.004,$$
 (19)
 $S_a 0.02, S_b 0.002, S_Y 0.004, r 0.985, n 5.$

Fig. 2. Correlation between $A^{1/2}$ and $\Delta q_{\pi}(X)$ for the series (1) HC=CX, (2) Me₃CC=CX, and (3) Me₃SnC=CX. Points belonging to plot 3 are shown.

Let us now consider how conjugation in $Me_3MC \equiv CX$ depends on the nature of M (C, Si, Ge, Sn) and on the partial atomic positive charges δ^+ on the triple bond (Table 7).

Owing to σ ,p conjugation, Me₃C acts as resonance donor. This follows from the negative σ_R^0 and Δq_{π} values of this substituent. Unlike Me₃C, Me₃M substituents (M = Si, Ge, Sn) exhibit not only resonance donor (σ , π conjugation) but also acceptor (d, π conjugation) properties with respect to the triple bond [1, 6, 7, 12]. In the ground electronic state of Me₃MC=CX molecules (lack of δ^+ charges on the triple-bond atoms), d, π conjugation prevails over σ , π conjugation, attenuating as the atomic number of M increases. This follows from the positive σ_R^0 and Δq_{π} values which decrease in the series M = Si > Ge > Sn. Evidence for this conclusion also comes from the σ_R^0 values of R₃M substituents (R = Alk, Ph) (Table 4).

The constants σ_R and σ_R^+ measure the resonance properties of Me₃M substituents at the triple bond in cases where the letter bears a low (n 0.01 e) and a high (n 0.1 e) charge [1, 2]. The negative values of the resonance constants of Me₃C slightly increase in the series $\sigma_R^0 < \sigma_R < \sigma_R^+$, as a result of the enhancement of σ_R^+ conjugation, produced by the δ^+ charge.

The effect of σ,π conjugation in Me₃MC=CX stronger depends on δ^+ at M = Si, Ge, Sn compared with M = C. Comparison of σ_R^0 and σ_R shows that Me₃Si does not longer acts as resonance acceptor

^a Calculated by Eq. (10-2) with the $\sigma_R^0(X)$ values. ^b Calculated by Eq. (11-2) with the $\sigma_R^0(X)$ values. ^c Calculated by Eq. (14) with the $\sigma_R^0(X)$ values. ^c Ab initio quantum-chemical calculation (4-31G basis) [11].

Series	R	Equation no.	Equation	$\Delta q_{\pi}(\mathbf{X}), \ e$	S_a	S_b	S_Y	r	n
HC≡CX [8]	Н	10-2	$A^{1/2} = 926\Delta q_{\pi}(X)$	0	58	_	12.3	0.979	13
$Me_3CC \equiv CX$ [5]	Me_3C	11-2	$A^{1/2} = 910\Delta q_{\pi}(X) + 23.8$	-0.026 ± 0.002	62	3.7	13.3	0.975	13
Me ₃ SiC≡CX [6]	Me ₃ Si	12	$A^{1/2} = 845\Delta q_{\pi}(X) - 27.3$	0.028 ± 0.006	47	2.8	10.1	0.983	13
Me ₃ GeC≡CX [7]	Me ₃ Ge	13	$A^{1/2} = 1081\Delta q_{\pi}(X) - 16.3$	0.022 ± 0.013	67	4.0	14.4	0.979	13
Me ₃ SnC≡CX	Me_3Sn	14	$A^{1/2} = 1080\Delta q_{\pi}(X) - 10.9$	0.016 ± 0.013	67	4.0	14.4	0.979	13

Table 6. Linear equations $A^{1/2} = c\Delta q_{\pi}(X) + d$, standard deviations S_c and S_d , standard approximation errors S_Y , correlation coefficient r, point number n, and calculated $\sigma_R^0(R)$ values for RC=CX series

Table 7. Resonance constants σ_R^0 σ_R [12], and σ_R^+ [13] and parameters Δq_{π} of the Alk₃M substituents in Alk₃MC=CX compounds

Alk ₃ M	$\sigma_R^0(\Delta q_\pi,\ e)$	σ_R	σ_R^+
Me ₃ C	-0.13 (-0.026)	-0.15	-0.19
Me ₃ Si	0.12 (0.028)	0.00	0.00
Me ₃ Ge	0.06 (0.022)	-0.18	-0.22
Me ₃ Sn	0.04 (0.016)	-0.24	-
Et ₃ Sn	0.05 (0.019)	0.25	-0.36

already at low δ^+ ($\sigma_R = 0$ suggests equal d,π^- and σ,π^- conjugation effects in Me₃SiC=CX). Therewith, Me₃Ge becomes resonance donor ($\sigma_R < 0$ suggests that σ,π prevails over d,π conjugation in Me₃GeC=CX). In Me₃SnC=CX, σ,π conjugation even stronger enhances.

The effect of further increase in δ^+ on σ , π conjugation manifests itself in differences in σ_R^+ and σ_R . As seen from Table 7, this effect is most pronounced when resonance donor properties obviously prevail over acceptor, i.e. in $Et_3SnC\equiv CX$.

EXPERIMENTAL

The compounds studied were synthesized as described above [14, 15]. Their purity was checked by ¹H NMR and GLC. The purity of the solvent (freshly distilled CCl₄) was checked by UV and IR spectroscopy.

The IR spectra of CCl_4 solutions (c 0.05–0.6 M) were measured on a UR-20 spectrometer at 2000–2300 cm⁻¹. The integral absorptivities A of the C \equiv C stretching vibration bands was performed by a procedure previously applied for HC \equiv CX [8] and Me $_3$ MC \equiv CX (M = C [5], Si [6], Ge [7]; X are inorganic, organic, and organometallic substituents). The A values were measured in practical IUPAC units [5–8] (1 mol⁻¹ cm⁻²).

The σ_R^0 constants for the Me₃M and X substituents were taken from [5–8].

The correlation equations were calculated by standard Statgraphics 3.0 programs. The least-squares treatment was performed at a 95% confidence level.

ACKNOWLEDGMENTS

Spectra studies were performed at the Analytical Center, Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, and financially supported by the Russian Foundation for Basic Research (project no. 00-03-40116).

REFERENCES

- Egorochkin, A.N. and Voronkov, M.G., Elektronnoe stroenie organicheskih soedinenij kremniya, germaniya i olova (Electronic Structure of Organic Compounds of Silicon, Germanium, and Tin), Novosibirsk: Nauka, 2000.
- 2. Egorochkin, A.N. and Razuvaev, G.A., *Usp. Khim.*, 1987, vol. 56, no. 9, p. 1480.
- 3. Vol'kenshtein, M.V., Gribov, L.A., El'yashevich, M.A., and Stepanov, B.I., *Kolebaniya molekul* (Molecular Vibrations), Moscow: Nauka, 1972.
- 4. Minkin, V.I., Osipov, O.A., and Zhdanov, Yu.A., *Dipol'nie momenty v organicheskoi khimii* (Dipole Moments in Organic Chemistry), Leningrad: Khimya, 1968.
- 5. Grindley, T.B., Johnson, K.F., Katritzky, A.R., Keogh, H.J., Thirkettle, C., and Topsom, R.D., *J. Chem. Soc., Perkin Trans.* 2, 1974, no. 3, p. 282.
- Egorochkin, A.N., Skobeleva, S.E., Mushtina, T.G, and Bogoradovskii, E.T., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1997, no. 1, p. 76.
- 7. Egorochkin, A.N., Skobeleva, S.E., Mushtina, T.G., and Bogoradovskii, E.T., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1998, no. 8, p. 1569.

- 8. Grindley, T.B., Johnson, K.F., Katritzky, A.R., Keogh, H.J., Thirkettle, C., Brownlee, R.T.C., Munday, J.A., and Topsom, R.D., *J. Chem. Soc., Perkin Trans.* 2, 1974, no. 3, p. 276.
- 9. Nikitin, V.S., Polyakova, M.V., and Belyakov, A.V., *Zh. Obshch. Khim.*, 1993, vol. 63, no. 8, p. 1785.
- 10. Belyakov, A.V., Nikitin, V.S., and Polyakova, M.V., *Zh. Obshch. Khim.*, 1995, vol. 65, no. 1, p. 81.
- 11. Marriott, S. and Topsom, R.D., *J. Mol. Struct.*, 1984, vol. 106, nos. 3–4, p. 277.

- 12. Egorochkin, A.N., Skobeleva, S.E., Tsvetkova, V.L., Bogoradovskii, E.T., and Zavgorodnii, V.S., *Metalloorg. Khim.*, 1991, vol. 4, no. 3, p. 599.
- 13. Egorochkin, A.N., Skobeleva, S.E., and Mushtina, T.G., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1998, no. 8, p. 1481.
- 14. *Chemistry of Acetylenes*, Viehe, H.G., Ed., New York: Dekker, 1969, p. 1298.
- 15. Methoden der organischen Chemie (Houben-Weil), Muller, E., Ed., Stuttgart: Thieme, 1977, p. 557.